Определение мышечных волокон. Типы мышечных волокон

Рассмотрим спортсмена, имеющего небольшие мышцы, которые становятся лимитирующим фактором. Например, бегун-перворазрядник, достигший предела своего развития, имеет мышцы, хотя и небольшие, но аэробные, он практически не устает, но уровень результата невысокий. Его мышцы проработаны. Они потребляют кислород по максимуму для своей массы. Что с таким спортсменом делать? Напомним, что в мышечном волокне каждая миофибрилла оплетается митохондриями, и больше определенного предела они не могут образоваться, только в один слой, если условно так говорить. В конце концов, эти МВ накапливают столько митохондрий, что больше прибавить не могут. Если мы этому спортсмену увеличим силу, то есть создадим новые морфологические структуры в виде миофибрилл, то вокруг них начнут нарастать новые митохондрии, и его потенциал начнет расти. Но обычными силовыми тренировками увеличения силы ОМВ не добиться. Дело тут вот в чем. Согласно исследованиям последних лет, существует четыре основных фактора, определяющих ускоренный синтез белка в клетках мышц, а значит - и развитие силы. Это запас аминокислот в клетке, повышенная концентрация анаболических гормонов в крови, повышенная концентрация свободного креатина в МВ, и повышенная концентрация ионов водорода. Выделение гормонов вызывается психическим напряжением. Повышенная концентрация свободного креатина образуется при значительном расходе КрФ в мышцах – нужна работа «до отказа». Повышенная концентрация ионов водорода - это закисление. Разумеется, закисление при этом не должно приводить к разрушению структур клетки. Так вот, в классической силовой работе используются и окислительные, и гликолитические волокна, но тренируются только гликолитические. Поскольку режим упражнений динамический (периодически мышцы полностью расслабляются), то через окислительные мышечные волокна идет кровь, доставляет кислород, и митохондрии устраняют ионы водорода, а без ионов водорода нет предпосылок роста миофибрилл в ОМВ, поэтому сила ОМВ не растет. Нужно слегка закислять мышцу, иначе она в силе прибавлять не будет. Это удивительно, что окислительные волокна работают, а эффекта нет. Где много кислорода, где много митохондрий, ионы водорода просто исчезают. Они образуются в быстрых волокнах, переходят в медленные и там исчезают. Поэтому главного стимулятора развития силы для окислительных волокон в динамическом режиме нет.

Мы в нашей лаборатории придумали упражнения, которые назвали статодинамическими, без расслабления мышц. Например, приседания со штангой с небольшим весом, даже с грифом от штанги. Электромиограммы свидетельствуют, что активность мышц в таком режиме около 50%, по мере утомления к концу упражнения она увеличивается, но не достигает максимума, что говорит о том, что высокопороговые МВ не рекрутируются. Выполнять приседания нужно медленно, и не выпрямлять ноги до конца, не давая возможности мышцам бедра хотя бы на мгновение расслабиться. Обычные приседания, только с амплитудой 15°, считая от горизонтали вверх. Как только выше привстанешь, мышца сильно расслабляется. После выполнения таких приседаний уже через 30 - 40 секунд мышцы устают, и появляется боль. Если мышца напряжена, то мышечные волокна сдавливают капилляры и кровь по ним перестает поступать в мышцу. Через несколько секунд начинается гипоксия, поэтому во всех клетках, в том числе и в окислительных мышечных волокнах, начинается анаэробный гликолиз, образуется молочная кислота. Мы использовали в многочисленных экспериментах самые обычные упражнения. Важно только стараться не допускать фазы расслабления мышц - делать движения в ограниченном диапазоне. Темп упражнения - медленный, количество повторений - до сильного утомления, до отказа от сильной боли. В культуризме прописан принцип, который мы реализуем - принцип накачки мышц. Это фактически то же, что мы разработали теоретически, а потом экспериментально доказали. Мы предлагаем делать упражнения в виде суперсерий: 30 - 40 секунд длится упражнение, 30 - 40 секунд отдых, и так три раза подряд. Затем 10 минут отдохнуть и все повторить. Если сделать 3 - 4 суперсерии (футболисты у нас делают по 6), то получится 18 подходов. Это хорошая развивающая работа для окислительных мышечных волокон. Но, конечно, начинать надо с одной суперсерии, а также тренировки для одной (конкретной) мышечной группы выполнять два раза в неделю. Рост массы миофибрилл требует 10 - 15 дней, поэтому силовая тренировка в развивающем режиме должна продолжаться 2 - 3 недели. За это время должны развернуться анаболические процессы, а дальнейшее продолжение развивающих тренировок может помешать процессам синтеза. Поэтому в последующие 1 - 2 недели выполняются только тонизирующие упражнения (1 - 3 подхода или суперсерия).

Можно выполнять такие упражнения круговым методом, но если включить в круговую тренировку упражнения для всех групп мышц, то это довольно мощный удар по эндокринной системе, что потребует большого времени для восстановления. Поэтому более подходящий вариант для бегунов на выносливость и лыжников - каждый день делать силовую работу, но только на разные группы мышц, чтобы гормоны выбрасывались в кровь и помогали синтезу различных органелл. Тогда упражнения для основных мышц будут повторяться, скажем, через четыре дня. Вообще, нужно отметить, что выполнение силовых упражнений каждый день дает общий оздоровительный эффект, способствует восстановлению, потому что внутренний гормональный фон повышается.

Аэробные тренировки обязательно должны предшествовать силовым. Ведь цель силовых упражнений - создать условия для гипертрофии, для создания новых миофибрилл. А это выделение гормонов, которые стимулируют ДНК внутри мышцы, что создает в конечном итоге предструктуру миофибрилл. Если после этого сделать интенсивную аэробную работу, то потребуется энергия, которая может черпаться как из гликогена, так и из этих предструктур, которые начнут разрушаться. Поэтому лучше сначала сделать аэробную работу, например, утром, а потом вечером - силовую, чтобы ночь оставить для необходимого синтеза вышеназванных структур.

ВОПРОС? При значительном закислении митохондрии погибают. Значит, при выполнении статодинамических упражнений погибают митохондрии в ОМВ? Насколько быстро можно их восстановить? Нужно ли исключать статодинамические упражнения при наборе спортивной формы?

Специально этот вопрос мы перед собой поставили, заставили борцов тренироваться, тестировали их до и после эксперимента. Они выполняли статодинамические упражнения по 6 - 8 суперсерий (3х8 = 24 раза). Очень тяжело было ребятам. И в результате оказалось, что выросли и силовые возможности, естественно, и аэробные возможности выросли. То есть эти упражнения не повлияли отрицательно на аэробные возможности мышц. Предполагается, что время терпения закисления не так велико, чтобы разрушить ОМВ, а они одарены большим количеством митохондрий, ионы водорода быстро поглощаются и ничего страшного не происходит. На каждом подходе тратится 5 - 6 секунд на то, чтобы мышца сильно закислилась. А потом лактат быстро уничтожается. Критическое время – больше минуты. Это упражнения типа приседания со штангой небольшого веса по 50 - 60 раз, это будет 2 - 3 минуты. Вот эти упражнения очень сильно разрушают мышцу. И вот у лыжников преимущественно такие упражнения делаются – небольшой вес, длительность упражнения около минуты-полутора минут. А статодинамические упражнения в тонизирующем режиме можно делать хоть за день до старта, только в развивающем режиме делать не стоит.

Боль в мышцах: молочная кислота или…

После того, как спортсмен приступил к тренировкам после перерыва более 50 дней, часто возникают боли в мышцах. Что это значит? Вопреки общепринятой точке зрения, с образованием молочной кислоты в мышцах это никак не связано. Это хорошо показано за последние 10 лет. Специально заставляли людей делать эксцентрические упражнения, то есть на растягивание мышц. Например, заставляли людей бегать с горы. Человек 5 - 6 раз сбегает с горы длиной метров 800, достаточно крутой. Затем приходит в лабораторию, где у него берут биопсию и смотрят, что происходит с мышцами. Сразу после тренировки мышцы не очень болят, но под микроскопом видно, что есть лопнувшие миофибриллы, что они просто порвались. В последующие дни продолжают брать биопсию. Наблюдают, что то, что лопнуло, начинает постепенно терять свою форму, образуются лизосомы рядом, начинают эти остатки разрушать. А осколки молекул имеют много зарядов, радикалов. К радикалам присоединяется вода, она тоже поляризована, и в итоге вода получается связанной, не хватает воды в клетке. Поступает дополнительная вода, в итоге клетка начинает расти в размерах, появляется тургор. Мышца как бы набитая. Как это у спортсменов называется? Забитость мышц и еще какие-то слова они произносят... Короче говоря, мембраны клеток сильно натянуты, а рецепторы болевые сидят на мембранах, человек ощущает боль. А потом в течение 3-4 дней окончательно разрушается то, что разрушено, остаются одни аминокислоты. Свободные радикалы постепенно исчезают, и боль начинает уходить. Отрицательный эффект этого проявляется только в том, что то, что разрушено, надо заново создать.

Причина этого явления в следующем. У нетренированного человека в мышечных волокнах присутствуют миофибриллы разной длины. Есть короткие, и есть длинные. Поэтому при эксцентрических упражнениях короткие рвутся. А если ты регулярно тренируешься, то миофибриллы внутри МВ становятся все одинаковой длины. Конечно, новые миофибриллы образуются все разные, и короткие, и длинные. Но при регулярных тренировках короткие всё время разрываются, поэтому их мало, и сильная боль уже не возникает, вообще прекращается. А есть молочная кислота, нет молочной кислоты, - это никакого значения не имеет. Боль - это всегда разрушение мышечных волокон или же более страшное: травмы, например, разрывы мышечных волокон.

Нужно точно знать, какие мышечные волокна преобладают в тех или иных мышечных группах, что можно определить с помощью особых тестов. О них и расскажу.

Мы все разные

Стараться ли выйти на большие тренировочные веса при малом количестве повторений или же делать упор на средний вес и большое количество повторений? Самое интересное, что нет универсального рецепта .

У кого-то будет прогресс от чисто силовой работы с небольшим количеством повторений. У кого-то, наоборот, силовая тренировка не вызовет отклик к росту мышц и не даст прогресса, а вот упор на увеличенное количество повторений со средним весом даст огромный эффект.

Опытные атлеты за годы тренировок интуитивно находят наиболее подходящую для себя схему. Обратите внимание, что в своих роликах на YouTube такие товарищи в большинстве своем говорят: «У меня нет четко прописанного плана по упражнениям на сегодняшнюю тренировку, я буду делать то, что посчитаю нужным и в таком режиме, который подходит моему телу в текущий момент ». Это и звезды бодибилдинга, и увлекающиеся граждане попроще, потратившие годы на работу с отягощениями.

Рано или поздно многие интуитивно находят свой тип тренинга, если не ленятся экспериментировать, но зачем терять время, когда можно все сделать намного быстрее и без лишних экспериментов?

Для начала разберемся с мифами касательно универсального тренинга.

Уравниловка не работает

На самом деле работает, но не очень эффективно. Под уравниловкой я подразумеваю классическую периодизацию нагрузок .

Это когда какой-то промежуток времени работаешь на силу с малым количеством повторений и большими весами, затем переходишь к среднеповторному тренингу с умеренными весами, потом отдаешь предпочтение легким весам, увеличивая количество повторений и сокращая время отдыха между подходами.

Кто-то неделю работает на силу, неделю в среднем режиме, неделю в легком. У кого-то циклы по 2–3 недели, по месяцу. У профи обычно «массонабор» на несколько месяцев с лютым зажором и огромными рабочими весами, а потом «сушка» на пару-тройку месяцев. Такие себе получаются здоровенные циклы между соревновательными сезонами.

Но с профи не все так просто и зачастую это очень одаренные генетически товарищи, которым простительны любые ошибки в тренинге. Особенно с учетом применения серьезной спортивной фармакологии. При этом наиболее успешные профессионалы как раз и приходят интуитивно к тренингу с учетом собственного строения мышц.

Простым смертным сложнее и ошибки в тренинге приводят к застою. Даже периодизация не всегда помогает. А если и помогает, то ненадолго, так как в ее рамках определенные мышцы работают эффективно лишь в одном из циклов.

Грубо говоря, классическая схема соотношения повторов и результата зачастую не действует. Схема это примерно такая и ей полвека отроду:

  • 1–5 повторов - на силу;
  • 8–12 повторов - на массу;
  • 12–20 повторов - на рельеф и выносливость.

Человек может пыжиться в попытках увеличить силу, а результат не растет - он топчется на одном месте и остается на одном и том же уровне месяцами, а то и годами. Аналогично с работой на массу. Рельеф и выносливость - это вообще отдельный разговор и для первого важнее разумный дефицит калорий, а не количество повторений.

Почему так происходит? Все дело в соотношении мышечных волокон первого и второго типа . Детально об этих типах я рассказывал в . Кому лень искать, вот информация:

  • Первого типа . Это медленные мышечные волокна, они же красные или окислительные мышечные волокна (ОМВ). Содержат много митохондрий, обладают медленной скоростью сокращения, низкой скоростью утомления и небольшой способностью к росту (гипертрофии). Кроме того, у них низкая сила. Используются для аэробной активности (бег, велоспорт). Источник энергии - жиры.
  • Второго типа . Быстрые мышечные волокна, они же белые или гликолитические мышечные волокна (ГМВ). В свою очередь они делятся на два подтипа :
    • Подтип IIа (переходные или промежуточные, ПМВ). Содержат среднее количество митохондрий, могут использовать аэробный и анаэробный метаболизм в равной степени, обладают высокой скоростью сокращения, умеренной скоростью утомления и небольшой способностью к росту. У них высокая сила. Используются в ходе продолжительной анаэробной нагрузки. Источник энергии - креатинфосфат, гликоген.
    • Подтип IIб (истинные быстрые мышечные волокна). Содержат малое количество митохондрий, используют только анаэробный метаболизм, обладают максимальной силой и скоростью сокращений. У них высокая утомляемость, но при этом и большая способность к гипертрофии. Собственно, эти волокна наиболее важны для бодибилдеров и силовиков, а также для спринтеров. Источник энергии - креатинфосфат, гликоген.

Если упростить, то чем больше у человека быстрых мышечных волокон (Подтип IIб), тем более он предрасположен к гипертрофии мышц и росту силы. То есть упор надо делать именно на силовые тренировки, чтобы реализовывать потенциал большого количества таких волокон.

Чем больше у него медленных мышечных волокон , тем меньше потенциал к росту силы и массы, зато такой человек намного более вынослив. Опять же, гипертрофия у медленных мышечных волокон присутствует тоже, так что тут уже упор на количество повторений и именно в таком режиме человек будет прогрессировать как в силе, так и в массе.

Если же преобладают промежуточные мышечные волокна (Подтип IIа), тогда наиболее эффективным будет тренинг со средними весами и средним количеством повторений в диапазоне от 8 до 12.

НО! У каждого человека есть все типы мышечных волокон, просто разное их соотношение. Так что и о других типах тренинга забывать не стоит, чтобы растить мышцы максимально эффективно, реализуя свой генетический потенциал.

Где и какие мышечные волокна преобладают

Некоторые мышечные группы нашего тела постоянно находятся под нагрузкой, что определило их, так скажем, универсальное для всех строение. Как вы понимаете, речь о медленных мышечных волокнах, которые не очень сильные, но зато выносливые. Хотя, как сказать «не очень сильные». Например, икроножные мышцы по силе вторые в нашем теле после мышц, которые сжимают челюсти (давление до 150 кг на см²).

Как бы там ни было, но в следующих мышечных группах практически у всех преобладают именно медленные мышечные волокна , которые растут лишь при работе на большое количество повторений:

  • Икроножные и камбаловидные мышцы.
  • Трапеции и разгибатели спины.
  • Предплечья.
  • Дельты.

Также во время бытовой жизнедеятельности весьма активно людьми нагружаются мышцы пресса, ягодичные и бедра (квадрицепс и бицепс бедра). Зачастую там преобладают промежуточные мышечные волокна. Но тут уже расхождений и исключений больше.

Что касается грудных мышц, бицепсов, широчайших мышц спины - это воля случая и генетики.

Благо, известные в мире зарубежного силового спорта Фредрик Хатфилд (он же Dr. Squat) и Чарльз Поликвин немало потрудились над научной составляющей силового тренинга, и на основе их работ был разработан алгоритм, определяющий соотношение типов мышечных волокон.

Как определить индивидуальное соотношение мышечных волокон

Алгоритм можно применять для любых мышечных групп, подобрав изолированное упражнение, но все-таки имеет смысл делать упор на самые крупные. То бишь на спину, ноги и грудные. Плюс бицепс - у многих проблема с его прокачкой.

Я лично провел тест на грудные, выяснив, что у меня там преобладают быстрые мышечные волокна (ура-ура - можно рассчитывать на внушительную массу), но о личных результатах расскажу чуть позже, а пока перейдем непосредственно к алгоритму.

Первый этап

Определяем максимальный вес отягощения, с которым можно выполнить один повтор. В случае с грудными лучшее упражнение для этого жим на горизонтальной скамье лежа .

Обратите внимание, что тест не для полных новичков . Только пришли в зал - отзанимайтесь несколько месяцев под присмотром опытных товарищей, научитесь правильно выполнять упражнения и приведите мышцы в тонус. Иначе можно схлопотать серьезную травму или же результаты теста будут неверными (из-за кривой техники выполнения и неспособности задействовать большое количество мышечных волокон).

Работаем аккуратно, чтобы не заполучить травму из-за плохо разогретых мышц. То есть, первым делом хорошенько разогреваемся с грифом , отдыхаем пару минут. Потом набросили небольшой вес, чтобы легко выжать его раз 15 и сделали 10 повторов. Таким же образом выполняем еще пару подходов, увеличивая вес и делая 50% возможных повторений. Отдых между подходами - пара минут.

Затем, когда мышцы хорошо разогреты, набрасываем серьезное отягощение, которое можешь выжать 3–4 раза. Жмем его один раз, отдыхаем 3 минуты минимум . За 3 минуты полностью восстанавливаются основные энергетические запасы в мышце.

Отдохнули, добавили 5 кг (или 5–10% от общего веса на штанге), снова выжали, снова отдохнули от 3 минут (но не более 5), добавили еще 5 кг, выжали… Так работаем, пока не дойдем до того веса, который выжать не удастся. Произошел облом, вес не взят - ок, вы выяснили свой максимальный вес, который можете выжать на один раз. Запомните его.

Второй этап

Теперь уже непосредственно будем определять тип преобладающих мышечных волокон в испытуемой мышечной группе .

Вообще рекомендуется проводить второй этап после знатного отдыха и на другой тренировке (после хорошей разминки, естественно). Но если невмоготу и хотите узнать все здесь и сейчас, тогда после последнего подхода с определением максимального веса отдыхаете 15–20 минут . Сидеть не стоит - ходите, чуть напрягайте грудные, разводите в стороны руки, чтобы мышцы совсем уж не остыли.

После того как отдохнули, вычитаете от своего максимально взятого веса 20% . Допустим, пожали на один раз 100 кг, значит оставляете на штанге 80 кг. Теперь самый важный момент - приступайте к выполнению упражнения на максимальное количество раз, которые можете сделать, не нарушая технику и без помощи со стороны.

  • Если выжали 80% от максимального веса в 7–8 повторениях , значит, у вас преобладают быстрые мышечные волокна. То есть у данной мышечной группы большой потенциал к росту массы и силы. Таким образом, 75% тренинга должно быть в силовом режиме . Если разбить это на простой месячный цикл, то три недели тренируете грудные тяжело (на 5–6 повторений в базовых упражнениях, до 8 в более травмоопасных, вроде отжиманий с весом), одну неделю - со средними или легкими весами. Хотя вариантов сплитов и циклов масса, главное понимать, что 3/4 тренинга должны быть силовыми, чтобы выжать максимум из потенциала своих мышц.
  • Если удалось пожать 9–10 раз , тогда поровну обоих типов волокон и тренинг разбиваем 50 на 50 между силовым и высокоповторным.
  • «Вытянули» 80% от максимального веса на 11–13 раз - у вас преобладают выносливые, но не очень сильные медленные мышечные волокна . В таком случае упор в данной мышечной группе делается на многоповторный тренинг, а силовому выделяется только 25% от общей нагрузки в цикле.

Для теста других мышечных групп подойдут такие упражнения :

  • плечи - армейский жим или жим гантелей сидя;
  • бицепс - подъем EZ-грифа стоя;
  • трицепс - французский жим;
  • спина широчайшие - тяга верхнего блока к груди сидя;
  • ноги - классические приседания со штангой на плечах.

Личный опыт

В текущий момент я провел тест на грудные и выяснил причину застоя в жиме лежа и в упражнениях на данную группу мышц в последние полгода. Остальные тесты еще впереди, но лишь когда закончится мой очередной большой эксперимент, о котором расскажу в будущем отдельно.

Ранее я пенял на то, что классический жим лежа делаю не чаще, чем раз в месяц, а в остальное время упор был на работу с гантелями, блоками и в тренажере Смита под разными углами наклона лавки. Как оказалось, проблема в другом.

В разгар моей , длившейся около пяти месяцев, на раз я выжал лежа 135 кг (да-да, силовые все-таки падают; хоть на раз не пробовал жать уже несколько лет, но чувствовал это и по рабочим весам). 80% от этого веса, то есть около 108 кг, я выжал на 7 раз (и еще пол разика, но не дожал до конца).

Таким образом у меня преобладают быстрые мышечные волокна и упор надо бы делать на силовой тренинг, в то время как у меня по большей части работа была на 12 раз, а в изолированных упражнениях до 15 повторений.

К слову, мой тренер (тут его ) выжал на раз 170 кг, а 135 (80%) пожал на 12 раз. То есть у него как раз наоборот - преобладают медленные мышечные волокна. Собственно, по его словам, он всегда отдавал предпочтение в работе на грудь большому количеству повторений, до чего дошел интуитивно.

Так вот, через несколько дней после теста, когда подошла очередная тренировка грудных, я устроил себе силовой тренинг . Что тут сказать, кроме «Ух ты!». Вся тренировка в целом прошла в совсем ином темпе. Обычно я ушатывался на первых двух упражнениях, а то и на первом, делая до отказа по 12 повторений в четырех подходах. Остаток тренировки проходил не очень бодро.

Теперь же, поработав в диапазоне 5–7 повторений в первом упражнении (жим в тренажере Смита с наклоном в 45°) я потом очень резво поразводил гантели со значительно более серьезным отягощением, чем обычно, и впервые за несколько лет отжимался от брусьев с дополнительным весом. В целом тренировать грудные в силовом режиме мне оказалось намного комфортнее, чем в средне- или многоповторном.

На повестке дня проверка ног, спины и бицепса, но этим я займусь месяца через три. А пока в приоритете другой эксперимент.

Попробуйте провести такой тест, и вполне возможно окажется, что тренинг пора кардинально менять, переходя на силовой или же, наоборот, на многоповторный для тех или иных мышечных групп. Как минимум, это еще один вариант как подстегнуть свои мышцы к интенсивному росту.

1. Мышцы.

Мышцы или мускулы (от лат. musculus - мышца) - органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов. Предназначены для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания.

мышцы

1.1 Функции и строение.


мышц

Основная функция скелетных мышц человека – перемещение тела в пространстве. Следует помнить, что мышцы при сокращении тянут, а не толкают (мышца резина, а не пружина) – это единственный вид сокращения мышцы.

Строение мышцы:

  • Мышцы крепятся к кости или к другой мышце с помощью сухожилья.
  • Мышца находиться в оболочке – фасции.
  • Мышца состоит из пучков мышечных волокон.
  • Пучок мышечных волокон состоит мышечных волокон.
  • Мышечное волокно состоит из миофибриллы и ядра.
  • Миофибрилла состоит из оболочки, миозина и актина.

Сокращение мышцы:


  1. Мозг дает сигнал по мотонейрону к мышечному волокну, чтобы оно сокращалось.
  2. Мышца получает сигнал для сокращения и начинает сокращаться.
  3. При сокращении нити актина «скользят» между нитями миозина используя для этого энергию (АТФ).
  4. После нити актина возвращаются в исходное положение.

Мышечное энергообеспечение.

Использование запасов АТФ в мышце – АТФ в мышце хватает на доли секунд при проявлении максимального усилия.

Креатинкиназная реакция – реакция ресинтеза АТФ с помощью креатинфосфата + АДФ, данный источник энергии хватает на несколько секунд (8-10 секунд). Включается практически моментально и быстро выключается, на смену ему приходит анаэробны гликолиз.

Анаэробный гликолиз – процесс образования АТФ с глюкозы без участия кислорода. Активно включается в работу через несколько секунд и длительность порядка 40-80 секунд. После 30-40 секунд из-за закисления клетки анаэробный гликолиз постепенно начинает выделять меньшее количество АТФ и на его смену приходит Аэробный гликолиз.

Аэробный гликолиз – процесс образования АТФ с глюкозы с участием кислорода. Основным источником энергии становиться примерно после 80 секунд активной работы. После истощения запасов гликогена основной источник энергии - жирные кислоты, а на смену аэробному гликолизу приходит окисление жирных кислот. В силовом тренинге не используется.

Окисление жирных кислот – процесс преобразования жирных кислот в АТФ с использованием кислорода. В силовом тренинге не используется.

От автора: Понимать процессы энерообеспечения мышц очень важно. Именно по энерообеспечению различают виды мышечной работы и развитие физических качеств. Так за силовые качества отвечает больше креатинкиназная реакция, за силовую выносливость – анаэробный гликолиз. А за выносливость аэробный гликолиз и окисление жирных кислот.

Поэтому при силовой работе на 1 повтор работает в основном креатинкиназное энергообепечение, и истощаются запасы собственного АТФ в мышце. На 2-6 повторов, если вложиться в 10 секунд, работает именно креатинкиназное энерообеспечени и частично анаэробный гликолиз. На 6-20 повторов большую часть энергии дает именно анаэробный гликолиз, так как креатинкиназное энерообеспечение отключиться примерно через 4-8 повторов. Аэробный гликолиз практически не участвует силовой работе, а только при тренировке выносливости, обычно он активно включается в энерообеспечение только после истощения анаэробного энерообепечения, что примерно через 40-80 секунд, в зависимости от степени нагрузки. А вот окисление жирных кислот включается только после практически полного истощения запасов гликогена, данный процесс наступает в зависимости от степени нагрузки и запасом гликогена.

Отдельно следует сказать, что такая последовательность включения различных систем энергообеспечения актуально только, если нагрузка будет 100%. Если давать не максимальную нагрузку, в таком случае могут включаться не все двигательные единицы (не все части мышцы) одновременно, а только часть. И в такой ситуации каждая система энергообеспечения может работать намного длительней, так как к работе будут подключаться «новые и свежие» двигательные единицы, когда старые, которые выполняли работу, уже «устали».

1.2 Виды мышечных волокон.


мышц

Основные классификации мышечных волокон:

  • Белые и красные мышечные волокна;
  • Быстрые и медленные мышечные волокна;
  • Гликолитические, промежуточные и окислительные мышечные волокна;
  • Высокопороговые и низкопороговые мышечные волокна.

Белые и красные мышечные волокна.

Первая классификация – по цвету. Это классификация по наличию пигмента миоглобина в саркоплазме мышечного волокна. Миоглобин красного цвета и он участвует в переносе кислорода к мышечной клетке. Чем больше кислорода требуется клетке, тем больше поступает миоглобина - волокно более красное. Когда меньше кислорода - волокно более светлое, от чего – белое. Также красные мышечные волокна имеет большее число митохондрий, чем белые, из-за большого потребления кислорода.

Белые мышечные волокна:

  • Миоглобина – мало.
  • Митохондрий – мало.
  • Потребление кислорода – малое.

Красные мышечные волокна:

  • Миоглобина – много.
  • Митохондрий – много.
  • Потребление кислорода – большое.

Быстрые и медленные мышечные волокна.

Вторая классификация - по скорости сокращения. Быстрые и медленные мышечные волокна классифицируются по скорости сокращения и активности фермента АТФ-азы. Фермент АТФ-аза участвует в образовании АТФ и соответственно в сокращении мышцы. Когда чем более активный фермент, тем быстрей синтезируется АТФ и мышца снова готова сокращаться.

Быстрые мышечные волокна:

  • Скорость сокращения мышечного волокна более высокая.
  • Активность фермента АТФ-аза более высокая.

Медленные мышечные волокна:

  • Скорость сокращения мышечного волокна более низкая.
  • Активность фермента АТФ-аза низкая.

Гликолитические, промежуточные и окислительные мышечные волокна.

Третья классификация – по энергообеспечению. Для получения энергии мышечные волокна используют жирные кислоты (жиры) и глюкозу (углеводы). Жирные кислоты с помощью окисления организм превращает в АТФ с помощью окисления. Глюкозу с помощью анаэробного и аэробного гликолиза также превращает в АТФ. Поэтому в организме существует три вида различных мышечных волокон, которые используют преимущественно один из видов энергообеспечения.

Окислительные мышечные волокна (ОМВ):

  • Основной источник энергии – жирные кислоты.
  • Энергообеспечение – окисление.

Промежуточные мышечные волокна (ПМВ):

  • Основной источник энергии – жирные кислоты, глюкоза.
  • Энергообеспечение – окисление, гликолиз.
  • Количество митохондрий – среднее количество.

3. Гликолитические мышечные волокна (ГМВ):

  • Основной источник энергии – глюкоза.
  • Энергообеспечение – гликолиз, преимущественно анаэробный.

Отдельно следует поговорить о ПМВ. Данный тип мышечных волокон очень хорошо адаптируется к нагрузке, в отличие от ОМВ и ГМВ. При длительных тренировках данные мышечные волокна могут приобретать больше признаков ОМВ или ГМВ. К примеру, если тренировать выносливость (бегать марафоны и топу подобное), в таком случае практически все ПМВ станут ОМВ, за счет увеличения количества митохондрий. При силовых тренировках МПВ перестраиваться в ГМВ, адаптируясь под соответственный вид тренировок.

Высокопороговые и низкопороговые мышечные волокна.

Четвертая классификация – по порогу возбудимости двигательных единиц (ДЕ). Двигательная единица состоит из: мотонейрона и мышечного волокна. Сокращение мышцы происходит под воздействием нервных импульсов, которые проводят нервные клетки от головного мозга к мышце, давая ей команду сокращаться.

Высокопороговые мышечные волокна:

  • Порог возбудимости – высокий (сокращаются при сильном импульсе, когда очень тяжело).
  • Скорость передачи нервного импульса – высокая.
  • Аксон с миелиновой оболочкой.

Низкопороговые мышечные волокна:

  • Порог возбудимости – низкий (сокращаются при слабом импульсе.).
  • Скорость передачи нервного импульса – низкая.

Объединение классификаций.

Белые быстрые высокопороговые гликолитические мышечные волокна (далее вГМВ):

  • Цвет – белый.
  • Скорость – большая.
  • Основное энергообеспечение – анаэробный гликолиз.
  • Порог возбудимости – высокий.
  • Аксон – с миелиновой оболочкой.
  • Количество митохондрий – мало.
  • Количество мышечных волокон в организме – заложено генетикой (это не факт, так как сейчас есть теория, по которой происходит миелинизация мотонейрона от тренировочной нагрузки).

Данный вид мышечных волокон, у людей, не занимающихся спортом, практически некогда не принимает участие в сокращении мышцы. Данные мышечные волокна включаются в работу только в экстремальных условиях на очень короткое время. У спортсменов занимающихся анаэробными видами спорта данные мышечные волокна активно принимают участие в сокращении при пиковых нагрузках (90-100% от ПМ, обычно это 1-3 повтора).

Белые быстрые гликолитические мышечные волокна (далее ГМВ):

  • Цвет – белый.
  • Скорость – большая.
  • Основное энергообеспечение – анаэробный гликолиз, частично аэробный.
  • Порог возбудимости – средний (ниже вГМВ, выше ПМВ).
  • Аксон без миелиновой оболочкой.
  • Количество митохондрий – мало.
  • Количество мышечных волокон в организме – различное (ПМВ превращаются в ГМВ при силовых тренировках).
  • ГМВ основа всей мышечной массы. Даже если у человека преобладают ОМВ по количеству, весь основной объем мышцы будет за счет именно ГМВ, так как эти мышечные волокна намного больше в объеме всех остальных. ГМВ включаются в работу практически во всех силовых упражнениях.

Промежуточные (могут быть как белые, так и красные) мышечные волокна (далее ПМВ).

  • Цвет – белый, красный.
  • Скорость сокращения – низкая, высокая (некоторые исследования подтверждают, что активность фермента АТФ-азы не может меняться от тренировки, потому возможно ПМВ, которые превратились в ГМВ остаются медленными).
  • Основное энергообеспечение – анаэробный гликолиз, аэробный гликолиз, окисление.
  • Порог возбудимости – средний (ниже вГМВ, ГМВ, выше ОМВ).
  • Количество митохондрий – средне (зависит от тренированности человека).
  • Количество мышечных волокон в организме – различное, (много у нетренированных людей, у тренированных ПМВ превращаются в ГМВ или ОМВ).

ПМВ это что-то усредненное между ГМВ и ОМВ, они использую энергообеспечение как и ОМВ, так и ГМВ. Особая способность этих мышечных волокон – приобретение признаков ОМВ или ГМВ в зависимости от нагрузки. Если идет анаэробная нагрузка и нужен больше гликолиз – ПМВ превращаются в ГМВ. Если человек получает аэробную нагрузку – ПМВ превращаются в ОМВ.

Красные медленные окислительные мышечные волокна (далее ОМВ):

  • Цвет – красный.
  • Скорость сокращения – низкая.
  • Основное энергообеспечение – окисление.
  • Порог возбудимости – низкий.
  • Аксон – без миелиновой оболочкой.
  • Количество митохондрий – много.
  • Количество мышечных волокон – различное, промежуточные мышечные волокна превращаются в ОМВ при тренировках на выносливость.

1.3 Адаптационные процессы в мышцах.


мышцы

Наш организм очень сложный, в нем происходит невероятное количество различных процессов каждую долю секунды, для поддержания жизнедеятельности. Данные процессы является адаптацией организма к раздражителям внешней среды. Далее будут описываться основные адаптационные изменения в мышцах при тренировках.

От автора: Процесс гиперплазии (делении мышечной клетки) не будет рассмотрен, связано это с тем, что данный процесс научно не обоснован, а все научные доводы крайне сомнительные. Поэтому будем рассматривать то, что хорошо известно и проверено на практике.

Для начала следует разобраться в процессе роста мышечной клетки. Как и почему она увеличиваться в размерах и что для этого нужно. Наш организм все время находится в гомеостазе (постоянстве), и любой стресс для него – проблема, с которой нужно справиться. Организм не любит стресса, он любит постоянство, а тренировка – стресс. Справляться организм будет следующий образом – создавать запас «прочности» для будущего внезапного стресса, а рост мышечной клетки и есть тот запас прочности для будущего стресса. Любой тренировочный стресс (стресс от силовой тренировки) для мышцы запускает мышечный рост, но для мышечного роста нужно полноценное восстановление.

Рост мышечных клеток.

Для того, чтобы мышечная клетка могла полноценно адаптироваться под нагрузку, своим ростом, есть ряд факторов, которые должны присутствовать в клетке (иногда их так и называют – факторы роста).

Факторы роста:

  • Аминокислоты – основной элемент построения всех белков животных и растительных организмов.
  • Анаболические гормоны – тестостерон, гормон роста и инсулин.
  • Свободный креатин – азотсодержащая карбоновая кислота.
  • Ионы водорода – простейший двухатомный ион H2+.

Все эти элементы должны присутствовать в клетке, для ее полноценного роста. Причем важна именно определенная концентрация каждого элемента, поэтому следует все разобрать подробнее.

Аминокислоты являются основным строительным материалом для полноценного роста мышечной клетки. Так как сократительная часть клетки, которая подвержена росту, состоит преимущественно из белков. При этом если аминокислот будет избыток, те аминокислоты, которые организм не сможет использовать на строительный материал, будут использоваться в качестве источника энергии. Поэтому следует понимать, что слишком большой избыток аминокислоты не приведет к ускорению мышечного роста.

Анаболические гормоны , а в первую очередь именно тестостерон, одни из важнейших факторов для мышечного роста. Именно тестостерон после попадания в клетки воздействует на ДНК клетки и запускает мышечный рост.

  • Тестостерон – воздействует на ДНК, повышает анаболизм.
  • Гормон роста – воздействует на рецепторы (трансмембранный белок), и повышает анаболизм.
  • Инсулин – воздействует на рецепторы мембраны клеток, улучшая проницаемость клеточных мембран, улучшает поступление аминокислот, глюкозы и микро и макроэлементов в клетку.

Свободный креатин появляется благодаря мышечному сокращению. При мышечном сокращении ресинтез АТФ происходит благодаря запасам креатинфосфата (Креатинкиназная реакция), что ведет к появлению свободного креатина. При этом повышенная концентрация свободного креатина в саркоплазматическом пространстве служит мощным эндогенным стимулом, возбуждающим белковый синтез в скелетных мышцах.

Ионы водорода активно появляются при разрушении молочной кислоты на лактат и ионы водорода. Ионы водорода по мере накопления разрушают связи в четвертичных и третичных структурах белковых молекул, это приводит к изменению активности ферментов, облегчению доступа гормонов к ДНК.

Следует понимать, что ионы водорода при большой концентрации могут разрушать мышечные клетки, поэтому их концентрации должна быть умеренной. В данном случае больше – не значит лучше.

С современными знаниями и препаратами человек может контролировать все четыре фактора отвечающие за мышечный рост. Концентрацию аминокислот можно поддерживать правильным питание богатым полноценными аминокислотами. Не смотря на то, что уровень тестостерона заложен генетически, и на него повлиять крайне сложно, силовые тренировки способствуют лучшему поступлению тестостерона в кровь. Также и свободный креатин, и ионы водорода способны выделяться только при силовых тренировках.

Отличия тренировок для «натурального» роста мышц и для «химического».

Пока не отошли далеко от темы, нужно рассказать, чем отличается гипертрофия при натуральных тренировках и при «химических».

Натуральному спортсмену более важно выделить большое количество свободного креатина, но при этом количество ионов водорода должно быть не в очень большом количестве, так как они будут сильно разрушать мышечную клетку. Также тестостерон не имеет такого большого значения, как при «химическом» тренинге, так как его концентрация не большая, и соответственно не нужно так много ионов водорода. Поэтому весь тренинг для набора мышечной массы должен быть построен преимущественно на креатинфосфатном энергообеспечении, для поднятия большей концентрации свободного креатина. В связи с этим оптимальное время для выполнения упражнений 8-10 секунд. Но, естественно необходимо и выполнять упражнения в диапазоне 20-30 секунд, при котором работает анаэробный гликолиз, для увеличения концентрации ионов водорода.

При этом «химикам» необходимо наоборот работать более в анаэробном гликолизе и стараться максимально увеличить концентрацию ионов водорода, чтобы «открыть» доступ тестостерону к ядру клетки. Поэтому становиться понятно, почему профессионалы так любят «пампинг». Во-первых, при «пампинге» сильно увеличивается кровоток, и поступают гормоны и аминокислоты к клетке. А во-вторых – «пампинг» очень сильно закисляет мышцы, идут большие энерготраты и повышается количество молочной кислоты, соответственно и ионов водорода. «Химикам» не следует сильно бояться закисления и разрушения мышечной клетки, так как положительный анаболизм от гормонов приведет к существенному росту мышечной клетки.

Теория мышечного роста, которые нынче не актуальны.

Теория разрушения – устаревшая теория, по которой микротравмы миофибрилл ведут к их суперкомпенсаи и росту.

Суть данной теории заключается в том, что при тренировке идут микротравмы мышечного волокна, которые при восстановлении увеличиваются в объеме с неким запасом прочности, тем самым увеличиваются в объеме. Обычно адепты данной теории рекомендуют тренироваться так, чтобы на следующий день была крепатура (мышечная боль), если же боли после тренировки нет, значит, тренировка несла слабое раздражение и была не эффективна. На самом деле данная теория не верна, по той причине, что многие не понимают причину пост тренировочной боли.

Пост тренировочная боль и правда возникает из-за микротравм миофибрилл, но сама боль не ведет к росту мышечной клетки. Крепатура возникает из-за различной длинны миофибрилл, которые сокращаясь не равномерно травмируются. После определенного тренировочного стажа все миофибриллы становятся равномерной длинны, что приводит к распределению нагрузки на них равномерно, поэтому микротравмы не происходят, и пост тренировочной боли практически нет. Но, человек все равно продолжает набирать мышечную массу.

От автора: « No pain no gain » - старое американское выражение, которое переводиться как: «Без боли нет роста». Было очень популярно в Америке, во времена золотой эры бодибилдинга. В то время как раз теория разрушения была актуальна, и все тренировались в очень больших объемах, чтобы максимально сильно микротравмировать мышцы и на следующий день получить мышечную боль.

От автора: Были исследования икроножных мышц олимпийских марафонцев непосредственно после забега. И исследования показали сильные повреждения икроножных мышц (большое количество микротравм миофибрилл), но при этом их мышцы не увеличиваются в размерах, а только становятся выносливее, за счет роста количества митохондрий.

Саркоплазматическая гипертрофия – увеличение размеров мышцы за счет роста саркоплазмы (не сократительного элемента клетки).

Даная теория ошибочная, саркоплазма занимает всего 10% от общей массы мышечной клетки, а миофибриллы практически 90%. И при этом большая часть саркоплазмы занимает именно гликоген. Естественно по мери тренированности запасы гликогена в мышцах увеличиваться, но их увеличение не существенное и сильно повлиять на размер мышцы не может.

Поэтому при силовом тренинге основной рост мышечной клетки идет именно за счет увеличения миофибрилл – сократительных элементов клетки, не сократительные элементы (саркоплазма) практически не влияют на размер мышцы.

Также адепты теории саркоплазматической гипертрофии часто используют «пампинг», аргументируя это тем, что большие энерготраты при «пампинге» ведут к истощению запасов гликогена и увеличению саркоплазмы. И «пампинг» действительно работает, в прошлой главе было подробно рассказано, но он ведет к миофибриллярной гипертрофии, а не саркоплазматической.

От автора : Все циклические виды спорта имеют намного больше запасы гликогена, чем тяжелоатлеты, так как используют преимущественно гликолиз. Использование гликолиза и истощение запасов гликогена ведет к суперкомпенсации по гликогену, в то время как тяжелоатлеты используют креатинфосфат как энергообеспечение, и запасы гликогена у них меньше. Поэтому саркоплазма более гипертрофирована (из-за запасов гликогена) у циклических видов спорта, но при этом тяжелоатлеты все равно имеют большую мышечную массу.

1.4. Виды мышечных сокращений и способы выполнения силовых упражнений.


мышцы

Виды работы мышцы:

  • Статическая (удерживающая) работа – мышца не меняет длины под нагрузкой.
  • Динамическая преодолевающая работа – мышца укорачиваться под нагрузкой.
  • Динамическая уступающая работа – мышца растягивается под нагрузкой.

Виды мышечных сокращений:

  • Изотоническое сокращение – мышца укорачивается при постоянной нагрузке (такое бывает только в лабораторных условиях).
  • Изометрическое сокращение – напряжение возрастает, длина мышцы не меняется.
  • Ауксотоническое сокращение – напряжение мышцы изменяется по мере ее укорочения.

Примеры:

  1. Если остановить штангу в любой точки амплитуды и зафиксировать – это статическая работа грудной мышцы (трицепсов и дельты) и изометрическое сокращение.
  2. Опускание штанги – динамическая уступающая работа и ауксотоническое сокращение грудных мышц, после начала выжимания штанги – динамическая преодолевающая работа и ауксотоническое сокращение.

Способы выполнения силовых упражнений.

Теперь перейдем к силовым упражнениям. Упражнения могут выполняться различными способами. Способы выполнения упражнений носят различный характер нагрузки на мышцы, задействуют разные мышечные волокна.

Амплитуда движения – это некая вылечена (длина), на которую может растянуться мышцы.

Амплитуда движения:

  • Полная, ограничения растяжением мышцы (пример: жим гантелей – амплитуда ограничена растяжением мышцы).
  • Полная, ограничения спортивным снарядом, таким как гриф, тренажер (пример: жим штанги лежа – амплитуда ограничена грифом).
  • Короткая, 1 - внутри амплитуды, на растянутой мышце (пример: жим лежа не выпрямляя локти). 2 - в полную амплитуду, но низ амплитуды чем-то ограничен (пример: жим с бруса).

Способы выполнения упражнений.

Силовой способ выполнения упражнения – классический метод выполнения упражнения.

  • – динамическая преодолевающая и уступающая работа в ауксотоническом сокращении.
  • – при растяжении средняя или медленная скорость, при сокращении – средняя или высокая скорость.
  • Амплитуда движения – полная, которую позволят растяжение мышцы или спортивный снаряд.
  • Наличие мышечного отказа – не обязательно (отказ может использоваться как метод повышения интенсивности).
  • Акцент на мышечные волокна – вГМВ – если вес близок к максимуму, а время выполнения упражнения порядка 8-10 секунд, ГМВ – если вес близок к максимуму, а время выполнения упражнения примерно 30-40 секунд.

Классический силовой способ выполнения упражнение наиболее эффективен как для набора мышечной массы, так и для развития физических качеств (силы или силовой выносливости). При этом данный метод максимально эффективен как для натурального спортсмена, так и для человека использующего допинг. Силовой способ выполнения упражнения вызывает микротравмы миофибрилл, что приводит к их суперкомпенсации. Так и при большом количестве повторов и подходов может закислять (молочной кислотой) мышечное волокно, что ведет к разрушению молочной кислоты и увеличению ионов водорода, которые способствую мышечному росту.

«Памповый» способ выполнения упражнения (pumping - от анг. накачка) – метод позволяющий ограничить доступ крови к мышечной группе, тем самым закисление мышцы идет сильнее. Основное отличие от силового метода в том, что увеличивается скорость выполнения упражнения, и сокращается амплитуда движения.

  • Вид работы мышцы и вид мышечного сокращения - динамическая преодолевающая и уступающая работа в ауксотоническом сокращении.
  • Амплитуда движения – короткая (работа внутри амплитуды, мышца все время находиться под нагрузкой).
  • Наличие отказа
  • Скорость выполнения упражнения - при растяжении – быстро, при сокращении – быстро (в памповой манере скорость больше, чем в силовой манере).
  • Акцент на мышечные волокна – преимущественно ГМВ. Очень слабо влияет на ОМВ за счет сильного закисления мышечных волокон.

Памповый способ выполнения упражнения крайне слабо травмирует миофибриллы, связано это с тем, что чаще всего вес на снаряде слишком мал, так же большое количество повторов в меньшей степени травмирует миофибриллы, а скорей ведет к более сильному закислению клетки. Также более короткая амплитуда движения, которая частично «перекрывает» кровоток ведет к тому, что кровь не может «вымывать» молочную кислоту, лактат ионы водорода, на которую она распадается, по этой причине очень сильно закисляется мышца. Помимо этого после выполнения подхода с кровью к клетке поступает большое количество различных веществ, таких как аминокислоты, глюкоза и гормоны. Именно по этой причине пампинг так эффективен в «химическом» бодибилдинге, так как там используется большое количество анаболических гормонов, которые при доставлении их в клетки способствуют мышечному росту. В «натуральном» тренинге пампинг намного менее эффективен и используется крайне редко.

«Негативный» способ выполнения упражнения или просто «негативы» – метод позволяющийдостигнуть очень сильного мышечного истощения (отказа).

  • Вид работы мышцы и вид мышечного сокращения - динамическая уступающая работа в ауксотоническом сокращении.
  • Амплитуда движения – полная или частичная.
  • Наличие отказа – не обязательно («негативный» отказ очень травмоопасен).
  • Скорость выполнения упражнения - при растяжении – очень медленно, при сокращении – быстро с помощью (помощь обязательна).
  • Акцент на мышечные волокна – вГМВ – если вес близок к максимуму, а время выполнения упражнения порядка 8-10 секунд, ГМВ – если вес близок к максимуму, а время выполнения упражнения примерно 30-40 секунд.

Статический способ выполнение упражнения или просто «статика» - единственный метод выполнения упражнения, при котором нет движения снаряда, также как и «негативы» позволяет достигнуть сильного мышечного истощения (отказа).

  • Вид работы мышцы и вид мышечного сокращения – статическая (удерживающая) работа в изометрическом сокращении.
  • Наличие отказа – не обязательно.
  • Скорость выполнения упражнения – неподвижное состояние.
  • Амплитуда – нет амплитуды движения.
  • Акцент на мышечные волокна – вГМВ или ГМВ (в зависимости от времени).

Статодинамический способ выполнения упражнения – довольно новый метод, приобрел популярность благодаря профессору Селуянову. Подробнее про статодинамику будет в отдельной главе.

  • Вид работы мышцы и вид мышечного сокращения – динамическая преодолевающая и уступающая работа в ауксотоническом и изометрическом сокращении.
  • Наличие отказа – обязательно (до полного закисления и отказа).
  • Скорость выполнения упражнения - при растяжении – очень медленно, при сокращении – очень медленно.
  • Амплитуда движения – короткая (работа внутри апмлитуды).
  • Акцент на мышечные волокна – ОМВ.

Негативный и статический способ выполнения упражнения крайне плохо себя зарекомендовал как тренировочный метод для набора мышечной массы. Связано это с тем, что «негативы» и «статика» более эффективны для тренировки суставно-связочного аппарата, микротравмируют сухожилья, что ведет к суперкоменсации. Во-первых - при «негативах» и «статике» небольшие энерготраты, что не ведет к выделению молочной кислоты. А во-вторых - идет большая нагрузка на мышцы, что очень сильно увеличивает шанс травмировать мышечное волокна, сухожилье или суставно-связочный аппарат, поэтому данный метод не используется в бодибилдинге, пауэрлифтинге или тяжелой атлетике. Из всего силового спорта, данные способы выполнения упражнения прижился только в армспорте, где суставно-связочный аппарат и сухожилья имеют большее значение, нежили мышцы.

1.5 Виды мышечного отказа.

Мышечный отказ – состояние мышц, когда они больше не способны справляться с нагрузкой.

Виды мышечного отказа:

  • Преодолевающий отказ (динамика)– когда больше невозможно поднять вес (мышцы не могут сократиться).
  • Статический отказ (статика)– когда больше невозможно удерживать вес (мышца не может сокращаться в статическом режиме и начинает расслабляться).
  • Уступающий отказ (негативы) – когда больше невозможно медленно опускать вес (мышца не может справляться с весом даже при растяжении, а не сокращении).

Пример выполнения упражнение с наступлением всех трех видов отказа: Человек выполняет жим штанги лежа, при этом выжимает последний раз и больше не может выполнить повторение (наступал преодолевающий отказ ). После чего удерживает вес на выпрямленных руках (важно не выпрямлять полностью руки, чтобы нагрузка не уходила в суставы, а оставалась на мышцах), и через некоторое время уже не способен удерживать вес, штанга начинает опускаться (наступил статический отказ ). При опускании штанги человек может еще прикладывать усилия для ее замедления (чтобы штанга опускалась медленнее с одинаковой скоростью), после штанга начинает ускоряться, даже при максимальных усилиях ее остановить (наступил уступающий отказ) .

Физиология мышечного отказа.

Преодолевающий отказ (динамика) – может наступать по двум причинам:

  • Мышца закислена и больше не может сокращаться.

Статический и уступающий отказ (статика и негативы) – также может наступать по двум причинам.

  • Истощена энергетика и мышцы больше не способны сокращаться.
  • Ограничение работы мышцы сухожильным веретеном и органом Гольджи.

Уточнение: Сухожильное веретено и орган Гольджи отвечает за напряжение и растяжение мышцы. В тех случаях, когда мышца максимально растянута или напряжение приходит своему пику – сухожильное веретено и орган Гольджи могут дать сигналы на мотонейроны, чтобы те переставали иннервировать мышцы (стимулировать сокращение). Это необходимо для того, чтобы мышца при напряжении не порвалась или не оторвалось сухожилье от кости.

Использование отказа в тренировочном процессе.

Мышечный отказ является одним из методов повышения интенсивности тренировки. Поэтому чаще всего используется как дополнительный тренировочный метод. Так как сильный мышечный отказ может сильно удлинить время восстановления после нагрузки. Несомненно, для последующего восстановления важен и общий тренировочный объем (сколько было отказных подходов), но чаще всего при использовании метода отказных повторов, тренировочный объем не большой.

Время для полноценного отдыха мышечной группы (и других систем организма) после отказных повторений:

  • Преодолевающий отказ – от 7-14 дней. Классический динамический отказ очень сильно «микротравмирует» миофибриллы (сократительные элементы мышечной клетки), также происходит существенная нагрузка на суставно-связочный аппарат и нервную систему.
  • Статический отказ – от 3 до 21 дня. Воздействие на организм статического отказа зависит от времени. Чем больше время перебивания под нагрузкой, тем соответственно меньше использованный вес. Чем больше вес – тем больше нагрузка на суставно-связочный аппарат и дольше восстановление. Также следует учитывать, используется статический отказ после динамического или отдельно.
  • Уступающий отказ – 14-28 дней. Негативный отказ самый тяжелый, он наступает в последнюю очередь и естественно нагрузка на организм от него самая большая. Уступающий отказ может наступить только после статического отказа. Нагрузка на суставно-связочный аппарат очень большая, также и на нервную систему.

От автора: Эти данные были выведены эмпирическим путем благодаря большому количеству людей, которые экспериментируют с мышечными отказами в тренировках. Некоторые данные (по преодолевающему отказу), были публикованы Селуяновым. Также и Майк Ментцер, один из основоположников отказного тренинга в бодибилдинге, рекомендовал делать отдых на мышечную группу до 14 дней, если на тренировке применялся отказной тренинг.

Вряд ли кто будет возражать, что в беге на средние и длинные дистанции необходима силовая подготовка, которая имеет свою специфику. Для ее правильного проведения надо учитывать наличие в мышцах быстрых и медленных волокон.

Редакция предлагает читателям цикл бесед с кандидатом биологических наук, заведующим проблемной лаборатории РГАФКа Виктором Николаевичем Селуяновым, который долгое время занимается изучением свойств мышц, мышечных волокон, особенностей развития силы и в целом оригинальным подходом к тренировке бегунов на средние и длинные дистанции.

- Виктор Николаевич, хотелось бы начать разговор с основных понятий. Что такое мышечная композиция?

Спортивный результат в беге на средние и длинные дистанции зависит от аэробных возможностей, точнее, от анаэробного порога, от мощности бега и величины потребления кислорода анаэробном пороге. Исследования показывают, что эти показатели напрямую связаны с мышечной композицией. Чем больше у спортсмена окислительных мышечных волокон, тем выше анаэробный порог.

Классифицировать мышечные волокна можно минимум двумя способами. Первый способ - по скорости сокращения мышцы. В этом случае все волокна делятся на быстрые и медленные. Это метод определяет наследственно обусловленную мышечную композицию. По ней можно определить будущую специализацию спортсмена. Как правило, бегуны на средние и длинные дистанции имеют большую долю ММВ (медленных мышечных волокон). Средневики - 50-70%, стайеры - 70% и выше.

Существует и второй способ классификации. Если в первом случае оценка идет по ферменту миофибрилл (миозиновая АТФ-аза), то во втором - по ферментам аэробных процессов, по ферментам митохондрий. В этом случае мышечные волокна делят на окислительные и гликолитические. Те мышечные волокна, в которых преобладают митохондрии, называют окислительными. В них молочная кислота практически не образуется.

В гликолитических волокнах, наоборот, очень мало митохондрий и при их работе образуется много молочной кислоты. Чем больше молочной кислоты, тем больше закисление, тем раньше наступает локальное утомление.

Результаты этих двух методов не обязательно совпадают. Задача тренера не переделать наследственность, а сделать так, чтобы у спортсмена стало больше окислительных МВ, что поддается изменению. При правильно построенной тренировке количество окислительных волокон у спортсмена может возрастать, так как в гликолитических МВ начинает увеличиваться масса митохондрий и они постепенно становятся более аэробными, потребляют больше кислорода и в конце концов перестают образовывать молочную кислоту. Почему это происходит? Потому что промежуточные продукты, например, пируват, не превращается в лактат, а поступает в митохондрии, где окисляется до воды и углекислого газа. Такие спортсмены показывают выдающиеся результаты, если нет других лимитирующих факторов.

- Как на практике определить мышечную композицию?

Международный стандарт - берут кусочек мышечной ткани (как правило, из мышц бедра - наружной головки) и биохимическими методами определяют, сколько быстрых и сколько медленных волокон. Ту же самую порцию подвергают еще одному анализу, при котором определяют количество дыхательных ферментов.

В нашей лаборатории еще под руководством Ю.В. Верхошанского были разработаны опосредованные, косвенные, методы, проводимые на универсальном тензографическом стенде. Мы на нем определяли скорость нарастания силы и оказалось, что она связана с количеством быстрых и медленных волокон. Потом такие же исследования выполнил Коми в Финляндии. Он нашел корреляционную зависимость между мышечной композицией по скорости сокращения и крутизной нарастания силы. Но мы пошли дальше и разделили градиент силы на саму силу, то есть получили относительный показатель, который хорошо работает. Мало того, может быть, это более точный метод, чем биопсия, поскольку мы прямо измеряем скорость напряжения мышцы.

Мы разделяем бегунов стайеров и бегунов на средние дистанции по этому показателю. У стайеров медленными мышцами являются как передние, так и задние мышцы поверхности бедра, а у бегунов на 800 м - мышцы передней поверхности бедра такие же медленные, а задние - быстрые, как у хороших спринтеров. Поэтому они быстро бегут 100 м с ходу, и именно эти мышечные волокна берегут до самого финиша.

-Значит, если мы берем биопсию из четырехглавой мышцы бедра, то мы можем порой ошибаться? Соотношение волокон в разных мышцах неодинаково?

Совершенно верно. В последнее время накопилось много материалов, которые свидетельствуют, что если одна мышца медленная, скажем, прямая мышца бедра, то не обязательно, что и все остальные такие же. Интересно, что у спринтеров передняя поверхность бедра не быстрая и не медленная. Поэтому можно предположить, что у них задняя поверхность быстрая, иначе быть не может, но биопсию все равно берут из передней поверхности бедра и результаты для спринта получаются некорректные.

- А по вашему методу?

По нашему методу все нормально. У спринтеров и передняя довольно быстрая и очень сильная, а задняя тем более. Если же взять прыгунов, то у них до 90% быстрых волокон в передней поверхности бедра - это главная для них мышца. Но в беге все-таки более важна задняя поверхность, она и рвется поэтому.

- Если опуститься вниз на мышцы голени, каковы они?

Спринтеры отличаются не только быстрой икроножной, но и быстрой камбаловидной мышцой. Чем длиннее дистанция тем больше там медленных волокон. Один опытный тренер мне рассказал, что в школах ищет ребят с быстрой стопой.

- Расскажите о схеме работы мышц в соревновательном беге, скажем, в беге на 800 м .

Со старта спортсмен выходит на нужную <крейсерскую> скорость, необходимую для бега, скажем, для этого нужно 15 секунд. Бегун рекрутирует практически все волокна в рабочих мышцах, которые тратят свою АТФ и креатинфосфат. Как только он вышел на эту скорость, активность мышц снижается до величины, необходимой для поддержания нужной скорости. Следовательно, те волокна, которые отработали свое (как правило, это быстрые или гликолитические), выключаются из работы и начинают отдыхать и восстанавливать АТФ, а бегун движется 30-40 секунд за счет тех мышц, которые обеспечивает эту скорость, но у них запас АТФ также начинает снижаться, а аэробные процессы не могут обеспечить заданной мощности, и бегун начинает подключать все новые двигательные единицы. Если к 600 м у него остались в запасе еще быстрые волокна, он сможет прибавить, если он исчерпал мышечные ресурсы, то сможет только поддерживать скорость, которая начнет падать, так как он включает не только окислительные волокна, но и самые быстрые гликолитические волокна, образующие молочную кислоту, ионы водорода. Это мешает мышцам сокращаться, и как бы бегун не хотел быстро финишировать, ничего не получится - скорость будет снижаться.

Идеальный бегун должен быть сильным и у него не должно быть гликолитических волокон. Чем выше анаэробный порог и чем ближе он к максимальному потреблению кислорода, тем выше будет результат. Ярким примером был новозеландец Питер Снелл, много использовавший в тренировке бег по холмам, что как раз наращивает количество митохондрий в гликолитических волокнах и гарантирует такой высокий уровень аэробных возможностей, что он мог не закисляться до самого финиша. Поэтому при низких скоростных способностях он умудрялся бежать в конце дистанции очень быстро.

- Значит можно сказать, что стратегия подготовки бегуна на средние дистанции с точки зрения развития мышц - это увеличение силы ММВ и перевод гликолитических в окислительные волокна.

Да. Это не изменение наследственной мышечной композиции, а попытка увеличить массу митохондрий и поперечник ММВ.

- Вы вспомнили Питера Снелла, но у нас сейчас есть Юрий Борзаковский, который начинает 800 м спокойно, а потом очень быстро финиширует. Можно предположить, что он тоже не закисляется.

Видимо, это так. Я с удовольствием бы его обследовал и дал бы какие-то рекомендации. Если у человека 100% окислительных волокон, то его тактика прохождения дистанции однозначна - он разгоняется до <крейсерской> скорости и потом ее держит до конца. Но такие люди встречаются редко или, как правило, они стайеры. Если же люди достаточно сильные, но мышцы у них недостаточно проработанные и у них есть гликолитические волокна, им лучше начинать в оптимальном темпе, держать эту скорость до финиша, а там выдавать, что есть еще в быстрых волокнах. Но гликолиз работает всего 20 секунд, поэтому начало спурта должно начинаться не более чем за 150 м.

- Давайте теперь поговорим о методах силовой подготовки.

В классической силовой работе с максимальными отягощениями используются и медленные и быстрые волокна, но тренируются только быстрые. Поскольку режим динамический (периодически с расслаблением мышц), то через окислительные мышечные волокна идет кровь, снимает оттуда ионы водорода, а без них сила именно в них не растет. Нужно слегка закислять мышцу, иначе она в силе прибавлять не будет.

- Это удивительно, что медленные волокна работают, а эффекта нет.

Законы физиологии требуют рекрутирования всех МВ, но другие биологические законы, связанные с синтезом миофибрилл, требуют наличия гормонов, креатина, это всегда есть, но ионы водорода открывают поры и гормонам легче поступать к ДНК. Где много кислорода, где много митохондрий, ионы водорода просто исчезают. Они образуются в быстрых волокнах, переходят в медленные и там исчезают. Поэтому главного стимулятора развития силы для медленных волокон нет в динамическом режиме.

- Тогда возникает вопрос, а как же идет развитие быстрых волокон, если ионы водорода все уйдут в медленные волокна и там исчезнут?

Ионы водорода образуются в гликолитических (быстрых) мышечных волокнахи могут дифундировать в соседние мышечные волокна и кровь. Поэтомув быстрых мышечных волокнах ионы водорода есть, а в окислительных (медленных) мышечных волокнах ионы водорода превращаются в воду при участии митохондрий.

- А как тогда увеличить силу медленных мышечных волокон?

Мы в нашей лаборатории придумали упражнения, которые назвали стато-динамические, без расслабления мышц. Например, приседания со штангой с небольшим весом, даже с грифом от штанги. Но выполнять их нужно медленно и не выпрямлять ноги до конца, не давая возможности мышцам бедра хотя бы на мгновение расслабиться. После выполнения таких приседаний уже через 30-40 секунд мышцы устают и появляется боль.

- Неужели при таком режиме быстрые волокна не включаются?

Электромиограммы свидетельствуют, что активность мышц в таком режиме около 50%, по мере утомления к концу упражнения она увеличивается, но не достигает максимума, что говорит о том, быстрые МВ не рекрутируются.

- Но в самом начале нашего разговора вы говорили, что в медленных мышечных волокнах практически не образуется молочной кислоты. Откуда тогда это закисление? Может быть, все-таки быстрые волокна работают в таких упражнениях?

Если мышца напряжена, то мышечные волокна сдавливают капилляры и по ним кровь перестает поступать в мышцу. Через несколько секунд начинается гипоксия, поэтому во всех клетках, в том числе и в окислительных мышечных волокнах, начинается анаэробный гликолиз, образуется молочная кислота.

- После таких тренировок происходит гипертрофия ММВ?

Конечно, но нужно учитывать, что медленные волокна могут занимать всего треть мышцы, а поперечник медленных мышечных волокон на 30-40% процентов меньше быстрых. Поэтому это происходит сначала незаметно, так как растет плотность миофибрилл, за счет появления новых, потом растет и поперечник, когда вокруг новых миофибрилл появляются митохондрии. Но митохондрии занимают всего 10% общего объема мышцы. Основной рост - за счет миофибрилл.

Всем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах.
Вот только классификаций этих типов волокон несколько, и они не всегда совпадают. Какие же классификации сейчас приняты?
Мышечные волокна делятся на:

  1. Белые и красные;
  2. Быстрые и медленные;
  3. Гликолитические, промежуточные и окислительные;
Белые и красные. На поперечном сечении мышечное волокно может иметь различный цвет. Он зависит от количества мышечного пигмента миоглобина в саркоплазме мышечного волокна. Если содержание миоглобина в мышечном волокне большое, то волокно имеет красно-бурый цвет. Если миоглобина мало, то бледно-розовый. У человека почти в каждой мышце содержатся белые и красные волокна, а так же волокна слабо пигментированные. Миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям, соответственно его количество определяется числом митохондрий. Увеличивая количество митохондрий в клетке специальными тренировками, мы увеличиваем количество миоглобина и изменяем цвет волокна.

Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии, заключенной в АТФ, осуществляется благодаря АТФ-азе. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.

Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые используются для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.
По этому признаку мышечные волокна подразделяются на три группы:
1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.
2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.
3. Гликолитические мышечные волокна имеют очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты с ресинтезом АТФ; аэробный гликолиз, или окисление, – расщепление пирувата в митохондриях с участием кислорода до углекислого газа, воды и ресинтезом АТФ.) У не тренирующихся людей обычно быстрые волокна гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости быстрые мышечные волокна превращаются из гликолитических в промежуточные, а затем и в окислительные, и тогда они, не теряя в силе и скорости сокращения, станут неутомляемыми.

Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервных импульсов, которые имеют электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервные импульсы, посылаемые мозгом, имеют частоту ниже этого порога, ДЕ пассивна. Если нервные импульсы имеют пороговую для этой ДЕ величину или превышают ее, мышечные волокна активируются и начинают сокращаться. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствие двигательного режима, например в коме или при долгом нахождении в гипсе, даже медленные мышечные волокна теряют свои митохондрии и, соответственно, миоглобин и становятся белыми и гликолитическими.
Поэтому в настоящее время в спортивной науке считается неправильным говорить «тренировки, направленные на гипертрофию быстрых мышечных волокон» или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще десять лет назад это считалось допустимым даже в специализированных научных изданиях.
Сейчас если мы говорим о тренировочном воздействии на мышечное волокно (МВ), то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель – поднять максимальный вес в единичном повторении.
В видах спорта, требующих проявления выносливости, классификации совпадать не будут.
Для наглядности несколько утрированный, хотя теоритически вполне возможный, пример. Обратите внимание, что все цифры условные, и их не надо воспринимать буквально.
Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг – на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок. Соотношение волокон, предположим, следующее: 90 % – быстрые, 10 % – медленные. По окислительному потенциалу 75 % – гликолитические, 15 % – промежуточные и 10 % – окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по шесть повторений. Вес штанги достаточно большой, чтобы рекрутировать 75 % гликолитических волокон, а окислительный потенциал их настолько низок, что и шести повторений достаточно для необходимого закисления мышцы. Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ.
Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторения с околомаксимальным весом раз в 7–10 дней.
Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5 % гликолитических волокон, 70 % промежуточных и 25 % окислительных. То есть гликолитические стали промежуточными, кроме 5 % самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение, естественно, не изменилось, также 90 % быстрые и 10 % медленные. 200 кг он выжал на один раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал. 180 кг он выжал на 8 раз, а 150 кг – на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту, не давая мышцам закислиться, что значительно увеличило их функциональность.
Теперь нашему атлету для увеличения мышечной массы работа на шесть повторений практически ничего не даст. Она задействует в нужном режиме только 5 % оставшихся гликолитических волокон. Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И дополнительно включить в тренировку статодинамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25 %, и игнорировать их уже нецелесообразно.

Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала!

Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-азы, считается некорректным.

P.S. Не стоит бояться развивать выносливость. Изменение окислительного потенциала процесс обратимый. Т.е. если вы решите набирать мышечный объем в режиме шести повторений, то через месяц-полтора этот режим снова будет давать свои результаты, а организм избавится от "лишних" митохондрий. Но тогда упадет выносливость.
Какой режим выбирать, решать вам.